
Effective Decision Support for Product Configuration by Using CBR

Hiroya Inakoshi, Seishi Okamoto, Yuiko Ohta and Nobuhiro Yugami
FUJITSU LABORATORIES LTD.,

9-3, Nakase 1-chome, Mihama-ku, Chiba City, Chiba 261-8588, Japan
finakoshi,seishi,yuiko,yugamig@flab.fujitsu.co.jp

Abstract

In this paper, we propose a new framework for product con-
figuration that integrates a constraint satisfaction problem
with case-based reasoning (CBR), and this framework is ap-
plied to an on-line sales system. Given a user query, CBR first
retrieves similar cases from the case base in which past suc-
cessful configurations are stored. Then, it formalizes desir-
ability criteria of products in accordance with the user query
by using the similar cases. Both the user query and desirabil-
ity criteria, as well as the definition of a product family that
is obtained in advance, composes a configuration model to
be processed with a constraint-based configurator. This con-
figurator processes this configuration model as a constraint
satisfaction problem with ranking its solutions by the desir-
ability criteria. Thus, the solutions that the integrated frame-
work provides can be appropriate to users and simultaneously
correct in the definition of product family. We conducted sev-
eral examinations to evaluate the performance of our on-line
sales system. The results of these examinations show that our
framework surely enlarges opportunities when users of our
system find useful configurations within a few configurations,
even if they specify a few query items.

Introduction
Many enterprises have manufactured products that satisfy
a significant number of people’s needs. According to mar-
keting research results, these products have been designed
to suit a certain category of people. However, enterprises
are moving away from the one-size-fits-all products to cus-
tomizable families of products. Since products in these
product families can be arranged to suit individuals, these
products can attract the interest of many people, and the sat-
isfaction of people who acquire these products is likely to
increase. The product families thereby bring strength to en-
terprises in the marketplace, and as a result, product con-
figuration has become a hot topic of investigation (Sabin &
Weigel 1998); for example, it has been applied to the de-
sign of computer systems (Barker & O’Connor 1989) and
telephone switching systems (Fleischanderl et al. 1998).
Electronic commerce is appealing to many people as well
as enterprises. Product configuration has a part in electronic
commerce, since complex products and services, such as in-
surance, travel, and personal computers, are expected to be
arranged for individuals via the internet.
c Fujitsu Laboratories Limited, 2001

Product configuration is a problem to present the most
satisfactory configurations for user requirement while ob-
serving the definition of product family. A product fam-
ily, including the products handled in electronic commerce,
consists of generic products and a variety of parts imple-
menting their particular functions. Though products in a
product family are designed so that they can be set up in
any combination with their standardized interfaces, there are
restrictions on their connections to one another. Other re-
strictions also have to be satisfied in product assembly, and
descriptions of desirability about what combination is good
have to be created according to specific purposes and sit-
uations. Each configuration methodology has a particular
model that represents configuration tasks, and these tasks are
carried out with the process control strategy of the methodol-
ogy. Product configuration thus makes it possible to arrange
products quickly and avoid use of the wrong configurations.

However, a large part of complexity of product configu-
ration lies in this representing of these models so that they
should have expressiveness and representational power. An
entire configuration model, including not only a definition
of product family but also a description of desirability that
users may have for products individually, is required to pro-
vide accurate solutions. In addition, configuration method-
ologies should have mechanisms to cope with the frequent
change of their models. It is because enterprises change def-
initions of product families within very short periods of time
since newer and better products appeal to more people. Ev-
ery time a product family changes, the corresponding con-
figuration model must be modified accordingly. This acqui-
sition and maintenance of configuration models is critical for
any configuration methodology, and it requires much effort
and expertise as well as costs.

There are many approaches to product configura-
tion (Barker & O’Connor 1989; Mittal & Fraymann 1989;
Stumptner & Wotawa 1998), including constraint-based and
case-based approaches, both of which are related to this
work.

A constraint-based approach (Fleischanderl et al. 1998;
Gelle & Weigel 1996) achieve generic and domain-
independent process control of product configuration. That
is, once a configuration model is obtained in the form
of variables and constraints, it can be processed with a
generic methodology, which is the constraint satisfaction

problem (CSP) technique. In such an approach, the vari-
ables represent the functions, properties, and parts of a prod-
uct family, and the constraints on the variables define their
relationship and restrictions on connectivity. However, users
have to adequately and precisely express their demands con-
cerning the products if they expect the desired solutions.
Moreover, if a user makes an incorrect demand in the def-
inition of a product family, configuration systems cannot re-
port any solutions. In this event, the task of the configura-
tion system is to detect the incorrect item and report it to
the user. These situations are not convenient for users, es-
pecially for ordinary users in electronic commerce because
they are users without expertise who do not have concrete
knowledge about product families.

A case-based approach (Rahmer & Voss 1996; Stahl &
Bergmann 2000) can work without a complete configura-
tion model. Instead, such an approach uses configurations
that are similar to user requirements as solutions. Thus, a
case-based approach greatly decreases the required effort to
obtain and maintain configuration models. However, a case-
based approach sometimes requires a case adaptation phase
in which the similar configurations must be modified to suit
the current requirements. It is thus necessary to acquire the
requisite knowledge and keep up-to-date on the relevant in-
formation to effect a case adaptation. This is another prob-
lem of model acquisition.

We propose a new framework of product configuration
that integrates CSP with CBR to provide desired products
by obtaining the configuration models tailored to individual
user queries. And we applied this integrated framework to
an on-line sales system. In this framework, CBR fist gen-
erates desirability criteria dynamically, estimating the desir-
ability of products for a user by using the similar cases to the
given query. Then, a constraint-based configurator ranks re-
sultant configurations by the desirability criteria, while these
configurations should strictly observe both the user query
and the definition of product family. Even if the user query is
incorrect in the definition of product family, this integrated
framework presents alternative products by modifying the
user query.

Moreover, our system possesses a navigation function to
quickly direct users to the products they want by outputting
good query items as their next selection. Although this nav-
igation function is not a part of the configuration process, it
provides decision support to users.

Integrated Configuration Framework
Figure 1 shows a new framework for product configuration
that integrates CSP with CBR. Above the constraint satisfac-
tion problem solver, which is named CSP solver, the CBR
part in our framework serves as a wrapper for the problem
solver. For this reason, we call this CBR part “CBR Wrap-
per.” The components in our framework are described be-
low:

Case base: The case base consists of the past cases, each of
which pairs a user query and its corresponding configu-
ration. The case base may therefore contain repetition of
the same or very similar queries and configurations, if the

CBR Wrapper

No solution

Parts
database

CSP
solver

Ranked
solutions

User query

Query
+

Obj. function

Relaxed query
+

Obj. function

Past
configurations

Definition of
a product family

Requirement
formalization

Case
retrieval

Requirement
modification

Case base

Figure 1: Framework for product configuration.

records represent typical cases in the marketplace.

Case retrieval: Similar cases are retrieved from the case
base in accordance with the similarities between the cur-
rent query and the cases. The similar cases are used to
formalize user requirements so that they are well-defined.
They are not used as direct solutions.

Requirement formalization: An object function is dynam-
ically generated by using similar cases to the current
query. A well-defined requirement consists of the current
query and the object function, and it is supplied to CSP
solver.

Requirement modification: The well-defined requirement
is modified only if there is no configuration and CSP
solver returns no solution back to CBR Wrapper. The
modified well-defined requirement is then supplied to
CSP solver again.

Parts database: A parts database contains the definition of
a product family. It defines the types of parts, the con-
straints on parts connectivity, and other kinds of restric-
tions on the products.

CSP solver: CSP solver receives a well-defined user re-
quirement and solves the problem specified by three ob-
jects, which are the current query, the object function, and
the definition of product family in a parts database. CSP
solver provides a solution to users. If no configuration is
possible for the current problem, CSP solver returns no
solution back to CBR Wrapper.

A user’s explicit demand for products is represented as a
user query. The user query consists of conditions on parts,
functions, and properties of the products. CBR Wrapper for-
malizes the user’s demand so that it is well-defined, and the
formalization consists of the user query and the object func-
tion generated with similar cases to the query. The definition
of the relevant product family is already retained in a parts
database. However, the entire configuration model must in-
clude a kind of description of desirability as well. Acquisi-
tion of this desirability is a delicate operation in general and
requires expertise about the target domain. CBR Wrapper

obtains this description of desirability as the object function
so as to be processed with CSP solver, estimating the de-
sirability of products for a user, even from a few conditions
supplied using similar cases to the query.

CSP solver solves the constraint satisfaction problem of
the configuration model with ranking its solutions in accor-
dance with the description of desirability; CSP solver pro-
vides the solutions that simultaneously satisfy all of the con-
straints and restrictions in a part database as well as the cur-
rent query, and these solutions are ranked by the object func-
tion at the same time. As a result, users can find the most
useful configurations.

Occasionally, there is no configuration that satisfies the
user query. This is because the current query is incorrect in
the definition of a product family. Users may supply such
an incorrect query, especially ordinary users in electronic
commerce, because they do not know much about the prod-
uct family. In this event, CBR Wrapper modifies the origi-
nal query, and CSP solver works on another CSP task with
the modified query. Thus, users obtain alternative configu-
rations and may have an opportunity to receive useful con-
figurations.

Application to E-Commerce
We applied this integrated framework to an on-line sales
system for personal computers. Personal computers are the
target product configuration in which we are interested, be-
cause they are made up of many parts, including CPU, mem-
ory cards, a CD-R/RW, and other peripheral devices. These
parts must be arranged correctly in the definition of a prod-
uct family as well as by usefulness according to a user’s
needs.

The first part of this section is a description of the system
and the user interfaces of our system. That is followed by a
description of the problem and explanation of the concrete
implementation of our kernel system. The final part is about
navigation, which is a kind of decision guide. Although this
is not a part of the configuration, it assists users to find the
useful configurations quickly by reporting effective query
items according to their purpose.

System
Our system architecture is shown in Figure 2. This
system was implemented with the JavaTM2 and
JavaServer PagesTM (JSP) technologies. JSP is a framework
for dynamic generation of HTML pages. Users can submit
their queries by filling in a form on an HTML page gen-
erated by JSP. The user query is submitted via an HTTP
connection and received by our configuration engine. The
configuration engine is composed of CBR Wrapper and
CSP solver, and it was implemented as a JavaBeans compo-
nent. JavaBean is an organized object that is automatically
instant by Java Virtual Machine to provide a certain set of
functions. The configurator bean is active during a session
managed by a cookie so that this system can handle multiple
accesses from different users concurrently. The user query
is parsed and supplied to the configurator bean. Then, the
bean performs the configuration task and returns a solution.

JSP generates an HTML page that reports the solution and
send it back via an HTTP connection. In addition, the CBR
Wrapper class implements navigation as one of its member
functions. The results of navigation are also reported on
HTML pages that are also returned via HTTP connections.

W
eb server

Query
form

Result

Navi.
form

JavaServer
 Pages

JavaBeans
component

Java virtual machine

CSP
solver

CBR
Wrapper Case base

Parts
database

Storage
system

Figure 2: Physical architecture of our configuration system.

Figure 3 shows the query form of our online shopping sys-
tem. Users interact with our system with this query form.
Users can specify their queries by selecting items displayed
on this form. Clicking the “Submit” button displays the
resulting configurations in a results window. Clicking the
“Navi.” button highlights an effective query item for the next
configuration.

Figure 3: Query form of our online shopping system.

Figure 4 is the results window for a query submitted with
the query form. At the top of the window, an image of the
product ranked at the top is displayed. Users can further cus-
tomize the product by selecting the items to the right of the
image, and the customized product is validated by clicking
the “Check” button. Satisfactory configurations and, some-
times, alternative configurations are displayed at the bottom
of the window.

Figure 4: Results window that opens when “Submit” button
on query form is clicked.

Table 1: All features in our system and their number of val-
ues.

Feature #values note Feature #values note

Budget – Numerical Hard Disk 2
Purpose 2 Utility-based Keyboard 2
Body Type 2 Peripheral 4
OS 2 Display Type 2
CPU 3 Display Size 3
Clock 5 Product# 10 Output
Memory 4 Display# 5 Output

Problem and Procedures
The input to our system is user queries that users submit with
the query form shown in Figure 3, and system output is a set
of configurations displayed for users in the results window
shown in Figure 4. Our system also utilizes cases, which
are past configurations. A user query, a configuration, and a
case, are represented on the same vector form:

Query = [PenIII; Compact; ?; � � � ; ?; ?]; (1)

Product = [PenIII; Compact; 128MB;

� � � ; FMV6800CL6; FMVDP849]; (2)

Case = [Celeron; SlimTower; 128MB;

� � � ; FMV6667SL6c; FMVDP849]: (3)

Unknown values, which are represented by ’?’, may oc-
cur in these vectors. Our system currently defines the 14
features as shown in Table 1.

With the exception of Budget, which takes a numerical
value representing price of a personal computer, these fea-
tures have their own domain and take symbolic values.

12 features out of the 14 features in Table 1 can be speci-
fied in a user query. A user query commonly contains many
unknown values when a user specifies only a few items. The
remaining two features, which are Product# and Dis-
play#, cannot be specified, and they therefore always take
unknown values in a user query. The goal of our system is to
determine all of the values in output vectors. These output
vectors represent the resultant configurations that should si-
multaneously be appropriate to the current user and correct

in the definition of a product family, and they appear in the
results window of Figure 4.

Case base Cases in a case base are about the past config-
urations that our system has provided to users. These cases
are represented in the vector form, and there is no unknown
value in them, since the output of our system is vectors with-
out unknown values as we have already explained above.
Each feature corresponds to a part or a property of a part,
which are the features of a personal computer with the ex-
ception of Purpose.

The current system has a single utility-based condition,
Purpose, as shown in Table 1. Purpose for buying a per-
sonal computer is actually neither a function nor a property
of products. This is just utility of a personal computer. For
ordinary users in electronic commerce, it is not always easy
to express demands in terms of specification level. Utility-
based conditions are therefore useful, especially for begin-
ners, for expressing desirability of products.

CBR is strongly suited for such types of reasoning where
the model of a problem is hardly exact, such as the one with
this utility. By only defining utility-based conditions as sep-
arate features of a case, our system retrieves similar cases
to these utility-based conditions. Purpose is retained as a
part of a case, if it is supplied by users.

Case retrieval First in configuration processes, similar
cases to a user query are retrieved from the case base. Let
the user query be q whose feature values are aj , and case be
c whose feature values are bj . The number of features is m
for both the query and case:

q = [a1; a2; :::; am]; c = [b1; b2; :::; bm] : (4)

The distance between the query and case is a sum of local
distances of the features whose values are not unknown in
the query:

d(q; c) =

mX
j=1

Æ(aj ; bj) ; (5)

where Æ(aj ; bj) is the local distance between the values of
feature j of the query and case. Our system determines
the local distance between the values of each feature by us-
ing the modified value difference metric (MVDM) (Cost &
Salzberg 1993) in the case base. Let D be the domain of a
target class:

Æ(vjk ; vjl) =

X
i2D

����Nki

Nk

�
Nli

Nl

����
r

(6)

where Nki denotes the number of times vjk is classified into
category i, and Nk is the total number of times vjk occurred.
We defined r as 1 and used feature Product# as the target
class.

We defined similar cases as the cases whose distances
to the query are less than threshold value " (Okamoto &
Yugami 1997): with a threshold value, ", if d(q; c) � ", c
is defined as a similar case of q. However, in case that there
were a very few similar cases, we employed another defini-
tion of similar cases to retrieve a sufficient number of cases
in generating an object function: the threshold value, ", is

extended until the number of cases where d(q; c) � " hold
exceeds a certain fixed number. Such cases are defined as
the similar cases of q.

Requirement formalization CBR Wrapper dynamically
generates an object function by using the current similar
cases. Let x be a representation of a configuration, and m be
the number of features. jDj j denotes the cardinality of Dj :

x = [u1; u2; :::; um]; vjk 2 Dj (k = 1; :::; jDj j) : (7)

Let F be the object function. For the configuration, x,
the value of the object function is calculated as follows, us-
ing the probability distribution of each feature in the similar
cases:

F (x) =

mX
j=1

X
vjk2Dj

Prob(uj = vjk)I(uj = vjk); (8)

I(uj = vjk) =

�
1 when uj = vjk

0 otherwise :

Mentioning utility-based conditions, they affect the object
function as well as similar cases. Thus, the object function
translates the utility-based conditions into the desirability of
parts, functions, and properties of products, and this transla-
tion is processed with CSP.

Parts database A parts database has a set of binary con-
straints on two different features. An example of the binary
constraint on Body Type and Memory is shown below:

(BodyType; Memory) (9)

2 f(Compact; 64MB); (Compact; 128MB);

(Desktop; 128MB); (Desktop; 256MB); :::g

These constraints are represented as sets of the feature
values that a configuration can have at the same time. We
defined constraints for 8 pairs of features.

CSP solver Supplied with the object function, F , and the
user query, q, CSP solver works on the constraint satisfac-
tion problem defined by the current query, the object func-
tion, and constraints on features. CSP solver currently em-
ploys a tree-search method enhanced by a lookahead strat-
egy. The tree-search method, basically, assigns in sequence
a feature value to each feature with an unknown value in the
current query. However, it is time consuming to backtrack
and to assign another feature value when the currently as-
signed feature value violates the constraints. A Lookahead
strategy can prevent this backtracking. Before assigning a
feature value to the next feature, it reduces the remaining
search space by examining the arc-consistency (Tsang 1993)
of the search space. Thus, the CSP solver operation becomes
backtrack-free, enabling its search method to become effi-
cient.

Requirement modification When there is no configura-
tion for a user query, the current system relaxes the query
items of an incompatible query by simply replacing a query
item with an unknown value. This relaxation occurs one af-
ter another for each feature that a user supplies with a certain

value. For example, for the original query, q, a set of relaxed
queries is given as Q:

q = [PenIII; 256MB; Note; ?; � � � ; ?]; (10)

Q = f[?; 256MB; Note; ?; � � � ; ?];

[PenIII; ?; Note; ?; � � � ; ?];

[PenIII; 256MB; ?; ?; � � � ; ?]g: (11)

The current system relaxes a single query item at one time
because the configurations far different from the original and
incompatible queries may not be helpful as alternative con-
figurations.

CBR Wrapper provides a relaxed query in Q and the ob-
ject function, F . CSP solver performs the configuration task
with them and returns configurations. This process is iter-
ated for each relaxed query. All of these configurations are
aggregated and ranked by object function. Modified con-
figurations that are desirable are ranked higher in the ag-
gregated configurations, although neither CBR Wrapper nor
CSP solver performs difficult resolution of incompatibility.

Navigation

Navigation is a kind of interactive decision guide that directs
users quickly to their desired configurations after they fill in
a few query items. Although navigation is not a function
of product configuration itself, it provides useful decision
support to users in product configuration. Since our config-
uration framework employs CBR, it can provide this naviga-
tion by utilizing the similar cases used to generate the object
function.

There are many properties and functions with which users
could express their demands, but users are reluctant to an-
swer a large portion of these questions. By using the current
similar cases, our system dynamically determines the most
effective query item where the query item is the best at clar-
ifying the desirability of products to users for all the query
items not answered so far. Thus, a requirement for a lot of
input by users is reduced by presenting the most effective
query items to users. Furthermore, it is very helpful if users
can express their demands interactively and can specify the
most effective query item in every interaction stage. Users
may not be expected to actually specify most of the query
items and express their demands at one time.

We employ information gain criteria (Quinlan 1993),
which is used in decision tree induction, to evaluate the dis-
criminating power of features between cases against class
labels. The information gain criteria therefore operates on
data with class labels. However, the decision guides have
to operate on data without class labels, which appears very
likely in actual application, and our case base is also without
class labels. To address this lack of class labels, another in-
vestigation on decision guides (Doyle & Cunningham 2000)
employed clustering to import class labels into data without
class labels. Then they calculated information gain values
against these class labels.

Our current system employs the following method that
handles the lack of class labels differently: each output fea-
ture is regarded as the target class, which is a virtual target

class, and information gain values are evaluated for all in-
put features that have not been answered so far. We denoted
the information gain value of feature j for virtual class t as
infoj(t). This is iterated for each virtual target class, and
these information gain values are summed for all the virtual
target classes:

infoj =

X
t6=j

infoj(t)Æt ; (12)

Æt =

�
1 when at = ?
0 otherwise : (13)

Feature e, which maximizes infoj , is presented to users as
the most effective query item for clarifying their desirability
of products:

e = arg maxj infoj : (14)

Empirical Evaluations
We examined whether our system has the effect that we ex-
plained. We should have conducted an evaluation with hu-
man subjects, since it is the best way and most practical.
However, we started with an empirical evaluation method
that simulates the performance of a human user because a
sufficient number of human subjects was not available.

We used leave-one-out cross validation as the evaluation
procedure: for each case taken out of the case base, our sys-
tem is examined to determine if it returns correct products
for the case. Then, the case is put back into the case base for
examination with the next case. We defined the correctness
of the solutions as follows:

Definition 1 "-approximation: Given a case, c, and a so-
lution, x, both of which have no feature with an unknown
value, x is defined as being within "-approximation of c,
when the number of features whose values differ between
c and x is less than or equal to ".

Definition 2 -" correct: Given a case, c, and ranked solu-
tions, X , X is defined as being -" correct for c when there
is a solution, x, that is within "-approximation of c in the top
 of X .

We selected accuracy to evaluate our system. Accuracy
means whether the solution contains a suitable product for
a query. The accuracy of the leave-one-out cross validation
task is defined as a ratio of the number of -" correct tests
to the number of all cases.

We carried out three examinations to evaluate the effect of
our three support functions: ranking configurations, present-
ing alternative configurations, and navigation. These exami-
nations were conducted on the case base used in the personal
computer sales that we have explained thus far. The detail
description of this case base is shown in Table 1; in short,
there are 14 features all of which take symbolic values with
the exception of one numerical feature, Budget. We left
Budget out of consideration because its value can be deter-
mined by the other feature values and is therefore irrelevant
to the examinations. Given several query items, values of all
the features should be determined by our system, and these
values are the subject of the test of -" correctness. Pur-
pose is not a subject of this test because it is only for input

and therefore irrelevant to the correctness of the resultant
configuration.

boolean

examine(c, n, init query(), next query())

f

q = init query(c);

for (k = 2; k <= n; k++)

f

X = configure(q);

if (is correct(X,c))

return true;

q = next query(q,c);

g

return false;

g

Figure 5: Procedure for examining correctness for a case.

Figure 5 shows the test procedure for every case.
We denoted a configuration task for a query, q, as
configure(q), which returns ranked products, X.
is correct(X,c) returns true if X is -" correct for the
case, c, and false otherwise. The examination procedure
simulates human activity, where very few features are spec-
ified initially, and then a feature value is interactively sup-
plied until the number of the specified features exceeds the
fixed number, n. init query() and next query()
simulate this interactive human activity. They initialize and
update, respectively, a query. Since these initialization and
update functions should be different for each purpose of the
three examinations, their implementations are explained in
separate subsections below.

Evaluation of Ranking Method

In this examination of our ranking method, the initializa-
tion and update functions are implemented as follows: the
initialization function, init query(c), first instantiates
a query, q, by copying the values of the current test case,
c. Then, it replaces all feature values with unknown val-
ues except for two feature values that are left untouched.
The two features are determined at random. The update
function, next query(q,c), specifies a single unknown-
value feature of the query, q, with the corresponding value
of the current test case, c. The unknown-value feature to be
specified is determined using the navigation functions.

Figure 6 shows that our system achieves high accuracy
even when very few features are specified. And it also shows
that the accuracy goes up drastically with small values
and becomes asymptotic with the values. Consequently,
our system provides useful solutions within a few configu-
rations. This means that our system saves users from exam-
ining on extremely large number of possible configurations,
within which they probably cannot easily find the desired
configurations.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 5 10 15 20

ac
cu

ra
cy

%

gamma

n=3
n=5
n=7

Figure 6: Evaluation of ranking method, where " = 1.

Alternative Products

In the examination on presenting alternatives, we used an-
other initialization function, but the update function is the
same one that uses the navigation function. The initializa-
tion function first instantiates a new query clearing all fea-
ture values with unknown values. Then, feature CPU is spec-
ified with the value in the current test case, c, while fea-
ture Body Type is intentionally defined as an incompati-
ble value that cannot hold with the CPU value at the same
time.

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 5 10 15 20

ac
cu

ra
cy

%

gamma

n=3
n=5
n=7

Figure 7: Evaluation of presenting alternative products,
where " = 1.

Figure 7 shows that our system achieves high accuracy
and that the accuracy becomes asymptotic at around = 5.
In addition, there is a significant difference in accuracy be-
tween the examinations with n = 3 and n = 5. This im-
plies that it becomes more possible to recover from an in-
compatibility if extra one or two query items are specified.
Consequently, our system provides users with opportunities
to obtain the desired configurations even when they provide
incompatible conditions in their queries. And this opportu-
nity becomes greater, if the users specify a few more query
items.

Navigation

In the examination of the navigation function, we employed
the initialization function used in examining the ranking
method. We employed two versions of update functions for
comparison purposes. One has the navigation function; we
used the same update function employed in the two exami-
nations above. The other does not have the navigation func-
tion, meaning that the next feature to be specified is deter-
mined randomly.

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6 7 8 9 10

ac
cu

ra
cy

%

n

epsilon=2
random:epsilon=2

Figure 8: Evaluation of navigation, where = 1.

In Figure 8, the accuracy quickly goes up in the examina-
tion with the navigation function, compared to the examina-
tion without navigation, where its accuracy increases almost
linearly. Consequently, this demonstrates that our system
function leads users to the desired configurations with much
fewer interactions.

Conclusion
We have proposed a new framework of product configura-
tion that integrates CSP with CBR. By using similar cases
to a current query, CBR dynamically generates a descrip-
tion of desirability. The configuration model is composed
of this desirability description and the given definition of
a product family. Thus, our system obtains the configura-
tion models adapted to individual user queries by using CBR
techniques. CSP solver processes this configuration model
as a constraint satisfaction problem with ranking the solu-
tions by the object function. As a result, the solutions are
arranged in sequence by desirability for a user, and they are
correct as well in that they satisfy both the user query and the
definition of a product family. Furthermore, our framework
presents alternative configurations by relaxing the values of
query items. Alternatives are helpful to users who conse-
quently have an opportunity of finding useful configurations
and to keep their inquiries active. We applied this frame-
work to an on-line sales system and described its concrete
implementation. Our system was evaluated empirically by
the accuracy that the system achieves in the leave-one-out
cross validation. The result of this experiment support our
belief that this framework is practical and works well in the
on-line sales system.

Further enhancements of our system is our future work.
One enhancement is that our system should be capable of
handling revisions of product family. It is not until new
products and parts become popular and in circulation that
they appear in similar cases to a user query. Accordingly, it
is unlikely that these products and parts are ranked higher in
solutions even if they are appropriate to some user queries.
One implementation to handle this problem is to define the
new products as synonyms of their old counterparts so that
the revised products could have preference similar to that of
the old ones. Another enhancement is that our system should
be capable of taking care of the intent of the sales side, such
as special sales of a certain product. We will utilize sample
cases with which the administrator of a sales system declares
a rule of product recommendation, sometimes, with the con-
ditions on user profiles. In addition, scalability is a critical
issue in on-line sales system. To handle a huge number of
cases, the implementation of storage reduction and case pro-
totyping is expected.

Another direction of our future work is applying CBR
Wrapper to other domains. CBR Wrapper may be located
between human users and an existing system specific to an
application area, such as a design of life insurance and trip
planning.

References
Barker, V. E., and O’Connor, D. E. 1989. Expert systems
for configuration at Digital: XCON and beyond. Commu-
nication of ACM 32(3):298–381.

Cost, S., and Salzberg, S. 1993. A weighted nearest neigh-
bor algorithm for learning with symbolic features. Machine
Learning 10(1):57–78.

Doyle, M., and Cunningham, P. 2000. A dynamic ap-
proach to reducing dialog in on-line decision guides. In
Fifth European Workshop on Case-Based Reasoning, 49–
60. Springer-Verlog.

Fleischanderl, G.; Friedrich, G. E.; Haselböck, A.;
Schreiner, H.; and Stumptner, M. 1998. Configuring large
systems using generative constraint satisfaction. IEEE In-
telligent Systems 13(4):59–68.

Gelle, E., and Weigel, R. 1996. Interactive configuration
using constraint satisfaction techniques. In 2nd Interna-
tional Conference on Practical Application of Constraint
Technology, 57–82.

Mittal, S., and Fraymann, F. 1989. Towards a generic
model of configuration tasks. In 11th International Joint
Conference on Artificial Intelligence, 1395–1401.

Okamoto, S., and Yugami, N. 1997. Theoretical analysis
of case retrieval method based on neignborhood of a new
problem. In Second International Conference on Case-
Based Reasoning, 349–358. Springer-Verlag.

Quinlan, J. R. 1993. C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc.

Rahmer, J., and Voss, A. 1996. Case-based reasnoing in the
configuration of telecooperation systems. In Tech. Report
FS-96-03, 93–98. AAAI Press.

Sabin, D., and Weigel, R. 1998. Product configuration
frameworks – a survey. IEEE Intelligent Systems 13(4):32–
85.
Stahl, A., and Bergmann, R. 2000. Applying recursive
CBR for the customization of structured products in an
electronic shop. In 8th German Workshop on Case-Based
Reasoning.
Stumptner, M., and Wotawa, F. 1998. Model-based recon-
figuration. In Proccedings Artificial Intelligence in Design
(AID-98).
Tsang, E. 1993. Foundations of Constraint Satisfaction.
Harcourt Brace & Company.

